Please check the examination details below before entering your candidate information

Pearson Edexcel International GCSE

Monday 7 January 2019

Morning (Time: 1 hour 30 minutes)	Paper Reference 4MB1/01

Mathematics B
Paper 1

You must have: Ruler graduated in centimetres and millimetres, Total Marks protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.

Pearson

Answer ALL TWENTY SEVEN questions.

Write your answers in the spaces provided.
You must write down all the stages in your working.

1 A shop sells a tablet computer for $\$ 230$
The shop increases the price of the tablet computer by 5%
Calculate the price of the tablet computer after this price increase.

2 The nth term of a sequence is given by $5 n^{2}-2$
Find the first 3 terms of this sequence.

3 The lengths of the sides of a triangle are in the ratios 4:5:6 The perimeter of the triangle is 80 cm .

Find the length of the longest side of the triangle.

4 Factorise fully $9 x^{2} y+12 x y^{2} z$

5 Make x the subject of $y=\frac{8(x+1)}{w}$

6 Simplify fully $\frac{\left(2 x y^{2}\right)^{3}}{4 x y^{2}}$

7

The diagram shows a curve drawn on a grid.
By drawing a suitable straight line on the grid, find an estimate, to one decimal place, of the gradient of the curve at the point when $x=1$

8 (a) Solve the inequality $5 x+4<20-3 x$
(b) Represent, on the number line below, your solution of the inequality in part (a).

9 The points O, A, B and C are such that $\overrightarrow{O A}=\binom{-2}{4}, \overrightarrow{O B}=\binom{5}{-3}$ and $\overrightarrow{A C}=\binom{-1}{-1}$ Find $|\overrightarrow{B C}|$

$$
|\overrightarrow{B C}|=
$$

10 (a) Write 340000000 in standard form.
(b) Calculate, giving your answer in standard form, $\left(2 \times 10^{99}\right) \div\left(5 \times 10^{110}\right)$

11 Given that, for all values of x,

$$
2 x^{2}-3 x+21=a(x-b)^{2}+c
$$

find the value of a, the value of b and the value of c.

$$
\begin{aligned}
& a= \\
& b= \\
& c=
\end{aligned}
$$

12

Diagram NOT
accurately drawn
$A O C$ and $B O D$ are diameters of a circle, centre O.
Prove that triangle $A B C$ and triangle $D C B$ are congruent.

13

Diagram NOT accurately drawn

The diagram shows a sector $O A B$ of a circle, centre O.
$O A=O B=3.6 \mathrm{~cm}$
Angle $A O B=85^{\circ}$
Calculate the perimeter, in cm to 3 significant figures, of the sector $O A B$.

14

Diagram NOT
accurately drawn

In the diagram, $A B C$ is a triangle with point D on $A B$ and point E on $A C$ such that $D E$ is parallel to $B C$.
$\angle A B C=40^{\circ} \quad \angle A E D=110^{\circ} \quad \angle B A C=x^{\circ}$
Find the value of x.
Give reasons for each stage of your working.

15 A car travelled at an average speed of $96 \mathrm{~km} / \mathrm{h}$ for $1 \frac{1}{2}$ hours and then travelled at an average speed of $56 \mathrm{~km} / \mathrm{h}$ for $2 \frac{1}{2}$ hours.
Calculate the average speed of the car for the whole journey.

16

Diagram NOT accurately drawn

The diagram shows the position of a rock R, a boat B and a lighthouse L. The bearing of L from R is 156°
(a) Calculate the bearing of R from L.

Given that the bearing of B from R is 072° and that $R B=R L$,
(b) calculate the bearing of L from B.

17

Diagram NOT accurately drawn

The diagram shows a shape $A B C D E$ made from a rectangle R and a semicircle S.
The side $D B$ of the rectangle is the diameter of the semicircle.
Given that $A B=9 \mathrm{~cm}$ and that the area of $S=2 \pi \mathrm{~cm}^{2}$
find the area of R.

$$
\mathbf{A}=\left(\begin{array}{rr}
-2 & -4 \\
1 & 3
\end{array}\right) \quad \mathbf{B} \mathbf{A}=\left(\begin{array}{rr}
2 & -8 \\
1 & 2
\end{array}\right)
$$

Find the matrix \mathbf{B}.

19 A solid cone has a mass of 1200 g , to 2 significant figures.
The area of the base of the cone is $38.5 \mathrm{~cm}^{2}$, to 1 decimal place.
The height of the cone is 5.0 cm , to 2 significant figures.
Given that

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

calculate the upper bound of the density of the cone.
Give your answer to 3 significant figures.

20

$A B C D$ and $P Q R S$ are two similar quadrilaterals.
The side $A D$ of length $(2 x+4) \mathrm{cm}$ is the longest side of quadrilateral $A B C D$.
The side $P S$ of length $4\left(x^{2}-4\right) \mathrm{cm}$ is the longest side of quadrilateral $P Q R S$.
The area of the quadrilateral $A B C D$ is $10 \mathrm{~cm}^{2}$
Show that the area, in cm^{2}, of the quadrilateral $P Q R S$ is $a(x-b)^{2}$
where a and b are integers to be found.

21 The lengths of cod caught by fishermen in a small fishing boat last month were measured.
The incomplete table and histogram below give information about the length of each cod caught last month.

Length $(l \mathbf{c m})$	Number of cod
$5<l \leqslant 25$	30
$25<l \leqslant 40$	75
$40<l \leqslant 50$	100
$50<l \leqslant 60$	155
$60<l \leqslant 80$	
$80<l \leqslant 100$	20

(a) Complete the table and the histogram.

Cod that have a length less than 35 cm are returned to the sea.
(b) Calculate an estimate, to one decimal place, of the percentage of cod caught that were returned to the sea from the boat last month.

22 The width of a rectangle is x metres.
The length of the rectangle is 7 m longer than the width of the rectangle.
Find the set of values of x for which the area of the rectangle is less than $44 \mathrm{~m}^{2}$
Show clear algebraic working.

23 Josh asks the students in his form how many hours they played sport last week.
The table shows information about his results.

Number of hours (\boldsymbol{t})	Frequency
$0 \leqslant t<1$	9
$1 \leqslant t<2$	8
$2 \leqslant t<3$	5
$3 \leqslant t<4$	7
$4 \leqslant t<6$	3
6 or more	0

(a) Find the class interval that contains the median number of hours.
(b) Calculate an estimate, to 3 significant figures, for the mean number of hours that the students in Josh's form played sport last week.

24 The function f is defined by $\mathrm{f}: x \mapsto 4+\frac{3}{x} \quad x>0$
(a) Find $\mathrm{f}(2)$
(b) Find the range of f .
(c) Express the inverse function f^{-1} in the form $\mathrm{f}^{-1}: x \mapsto \ldots$

The function g is defined by $\mathrm{g}: x \mapsto 4 x-5$
(d) Express the composite function fg in the form $\mathrm{fg}(x)=\ldots$

25

The diagram shows a pyramid with triangular base $O A C$. The edges $O A, O B$ and $O C$ of the pyramid are perpendicular to each other.
$O A=7 \mathrm{~cm} \quad O B=12 \mathrm{~cm} \quad O C=5 \mathrm{~cm}$
(a) Calculate the volume, incm^{3}, of the pyramid.
(b) Calculate the area, in cm^{2} to 3 significant figures, of triangle $A B C$.
cm^{2}
(6)
(Total for Question 25 is $\mathbf{8}$ marks)

Turn over for question 26

26 Solve the simultaneous equations

$$
\begin{aligned}
x^{2} & =10-y^{2} \\
x+2 y & =5
\end{aligned}
$$

Show clear algebraic working.

27 A curve has equation $y=x^{3}-4 x^{2}+2 x$
Find the x coordinate of each of the points on the curve at which the gradient of the tangent to the curve is 2

